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CONDITIONS AFFECTING FATIGUE-CRACK-GROWTH RATE:
RELEVANCE TO TEST METHOD SELECTION

AND DATA INTERPRETATION

INTRODUCTION

Fatigue-crack-growth rate (FCGR) is of fundamental importance to structural integrity
technology. The material of any structure subjected to repeated loading cycles is a candidate
for the initiation and propagation of fatigue cracks. Since it is now generally recognized that
virtually all structures will contain cracks or imperfections that can be considered cracklike de-
fects, propagation will be the stage discussed here.

FCGR testing has a long but often unrecognized history. Crack-growth information was
buried in "cycles-to-failure" fatigue data for many decades and was not specifically identified for
engineering use. No adequate engineering representation existed until 1963, when Paris [11
showed that FCGR expressed as daldN appeared to be a unique function of stress-intensity
factor range AK, such that

da/dN = A AK'. (1)
An extensive amount of data has since been collected and analyzed in this fracture

mechanics format. Later, it became obvious that the log-log plots of Eq. (1) were actually sig-
moidal, the linear approximation being valid only over the midrange (Fig. 1). Because this mi-
drange generally coincides with service loading conditions, representation of FCGR by this
simple Paris law remains of great practical importance.

However, even the most casual literature survey reveals glaring discrepancies between
results of various investigations and their interpretation. It is well known that many factors
can influence the crack-growth resistance of materials; these naturally enter into the design of
laboratory tests for such properties. An attempt to classify some important variables associated
with FCGR testing seems warranted. These will be discussed as

Conditions of the material
Conditions of the test -mechanical
Conditions of the test -environmental

and will be considered with respect to two environments:

1. Ambient air
2. Aqueous and saline (3.5 percent NaCI)

Manuscript submitted February 14, 1977.
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ONDITIONS OF TE MATERIAL

Alloy System - Variations in the alloy system (steel, a5^uminum, and titanium) seem to,
influence somewhat the value of the exponent in Eq. (1).

Microstructure -Different values of t~he preexponential constant and exponent tr in Eq,
(1) may be chlaracteristic of certain steel microstrulctures-,225D4

Martensitic: kdald = 6,6 x 10 -"AK~esD4
Ferritic-Pearlitic: daldN = 0,36 x IO -9A K" [31
Austentic Stainless; daldN = 0.30 x 10 -9 AK' 25 [5-713

D3eviations from these numerical values will be discussed later.
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Thickness - Ambiguity and inconsistency characterize the literature of thickness effects

on FCGR, since three types of response are documented:
1. No effect of thickness [8-11]
2. Growth accelerated by increased thickness 14,12]
3. Growth accelerated by decreased thickness [13,14].

Tests at NRL showed a slight increase in FCGR and considerable scatter in tests on specimens

cut from an as-heat-treated plate of 5Ni-Cr-Mo-V steel. When this material was stress relieved

after being cut, no effect of thickness was noted but FCGR was substantially increased [151

(Fig. 2). Further studies on A516-60 steel from a series of test specimens of varied thickness

normalized, cut down, and stress relieved, again show no effect of thickness [16] (Fig. 3).

Processing History - The discussion of specimen thickness effects demonstrates that

specimen processing affects FCGR. Lack of uniformity in such processing, together with a lack

of reported processing information, is believed to have contributed largely to the ambiguities
cited in this report. Sequences of processing can be described as follows:

1. Roll to size, heat treat, and test
2. Cut to size, heat treat, and test
3. Heat treat, cut to size, and test
4. Stress relieve prior to testing in (1), (2), or (3).

All of these require experimental investigation.

CIZ
I0 U

E ,

lE 1D

31 a /_ _ _ . _ - I / _ _. L_ _ , _ I

10 100-10 100

STRESS INTENSITY FACTOR- RANGE, AKeff (KSI V1W)

Fig. 2 - daldNV vs AK ror 5Ni-Cr-Mo-V steel: effect of thickness in specimens
tested as heat treated and stress relieved (Ref. 15, Fig. 2)
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Yield Strength Level - Limited information on the effect of yield stress is available. Fa-
tigue tests on 4340 steel tempered at a series of different temperatures show ambiguous results.
Both Anctil and Kula [171 and Miller [181 find a variation in the exponent n of Eq (1) with
tempering temperature. On the other hand, Imhof and Barsom [191 find no effect of tempering
temperature. A replot of these data can be seen in Fig. 4. Studies on a 17-4 stainless steel in-
dicate little effect of tempering temperature on n (191.

CONDITIONS OF THE TEST - MECHANICAL

Ambient Air Environment

Specimen Type - The specimen type does not appear to affect the test results. In Fig. 5,
data from three specimen types (CT, CCT, and SEN) are shown together with the trend line
from the CT specimen.

Frequency - Tests in ambient air are apparently not affected by test frequency 120,211.

Waveform - No difference in test results were noted with sinusofdat, triangular, or square
waveforms [201.
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Stress Ratio - The effect of stress ratio R is evident (Figs. 6a, 6b). At present the ap-
parent acceleration of crack-growth rate cannot be explained. However, development of a gen-
eralized relationship incorporating the effects of different R values is important; it would allow
estimates of crack growth to be made from one series of experimental determinations. Several
complex models have been proposed for such a generalized relationship [23-271. A simpler
model (221 describes the effect of R for a SNi-Cr-Mo-V steel such that

da/dN = A AK;,

where

AK Iff I l-RAK

b =0.85,R> 0
= 1.40, R < 0.

Stress Amplitude History - Recent literature reports both acceleration (281 and retardation
(29,301 of fatigue-crack growth due to load sequence effects. To predict the latter, several
models have been proposed (30-331. One attempt to normalize da/dN from variable-amplitude
loading studies uses a root-mean-square (rms) value of Au for computing AK [341. An equally
successful effort at normalization of ten block loading profiles uses the simple mean value only
1351.

Service Condiions - From the foregoing discussion of test conditions in ambient air, it
can be seen that only stress ratio and amplitude (variable) have an immediate bearing on ser-
vice conditions.

Aqueous and Saline Environment

Specimen Type - There is no evidence to suggest that specimen type influences FCGR.

Frequency - This variable is highly important when testing is done in an aggressive en-
vironment. In general, the lower the frequency the more pronounced the increase in FCGR
expressed as do/dN. Actually, of course, the time of crack growth to failure is greatly increased
at lower frequencies. Good coverage of the effect of frequency has been made on X-65 line
pipe steel by Vosikovsky [211, on HY-80 and 4340 by Gallagher 1361, and on 4340 by Krafft
[371. Data from Ref. 21 cover approximately four orders of magnitude of da/dN and were ob-
tained under conditions of free corrosion and cathodic potential. Three regions of growth are
identified. Available data for a condition of free corrosion are seen in Fig. 7a and those for
cathodic potential in Fig. 7b. Departure from the slope of Region I at higher values of daldN
as the frequency is reduced is evident. Also evident is the fact that the slope of Region I is
higher in the NaCI environment than in air. Other results by Barsom concerning the effect of
frequency confirm that it is more pronounced at lower frequencies [19,381. What is surprising
about these data, however, is that the authors are apparently discussing Region H environrmen-
tal data and find no slope change from air data, (Figs, Sa, and 8b). Crooker and Lange 1391, on
the other hand, testing at higher values of da/dN and AK, show data obviously belonging to
Region 11 in a 12Ni maraging steel (Fig. 9).
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Reexamination of Imhoff and Barsom's data on 12Ni maraging steel [2] suggests that Re-
gion II behavior wvas commencing at the uppermost limit of his data and went unrecognized.
Paris [401 shows behavior similar to that of Crooker and Lange for a D6a steel. The most obvi-
ous conclusion here is that, except for Vosikovsky [21], the experimenters did not cover a wide
enough range of da/d~values to charaterize completely the effects of corrosive environments.

Wavzeform - In adverse environments the waveform does have an effect, but its exact
consequence appears unresolved. Barsom [201 found that the environmental effects occurred
only during increasing tensile stresses. Crack-growvth rates under sinusoidal, triangular, or posi-
tive sawtooth waveforms showed environmental effiects, but under square or negative sawtooth
waveforms they were the same as in air. This result was confirmed by Pelloux on 7075-T73
aluminum in a discussion to the same Ref. 20 and by Crooker, et a]. [41]. Another discussion
to Ref. 20, however, by Hudak and Wei, indicated that tests on 7075-T651 using both positive
and negative sawvtooth forms were identical. To further complicate matters with respect to
waveform, Vosikovsky [21] finds that with cathodic potential, daldN values from a square
waveform,) while lower than those using a triangular waveform, are still higher than those in
air.

Stress Ratio -No references to studies on the effect of stress ratio have been found.

Amplitude -No references to studies on the effect of variable-amplitude loading on
FCGR in aqueous environments have been Found.

10
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Service Conditions - Here, frequency and waveform as well as stress ratio and amplitude
may well represent variables in service conditions.

CONDITIONS OF THE TEST-ENVIRONMENTAL

Composition of contaminate solution.
Solution flowing or still.
Cathodic protection - sacrificial anode or potentiostat.

Recent experimental work has shown that in a flowing solution the corrosion fatigue-
crack-growth rate (CFCGR) was the same under both freely corroding and cathodically pro-
tected conditions. In a still solution CFCGR was accelerated in the cathodically protected
specimen.

SOME CAUSES OF DISCREPANCIES AND
MISINTERPRETATIONS

Limited da/dN Range

Schematic diagrams of various curves of da/dN vs AK postulated [42] for corrosion fatigue
are seen in Fig. 10. Figure 11 depicts behavior exhibited by certain nonferrous alloys [431. By
referring back to Figs. 7, 8a. 8b, and 9 we see that the data apparently do not fit the postulated
forms. Discussion of the data in Fig. 9 shows quite clearly that the range of data was not
sufficient to characterize the environmental effect. The four orders of magnitude shown in Fig.
7 are more representative. The limited ranges studied have also led to divisions into regions,
which differ from author to author. This must be clarified.

Material Thickness

This subject has already been covered in some detail. Clearly, to assess service conditions,
the material must be tested in the processed form it will be used. Further, to elucidate the
mechanisms of crack growth, reports of research must include processing information.

Aggressive Aggressive Aggressive

I 4 

Qo I 5 I~o
01 inertl I orI r

KIC or KC 9kIscc" Krc or KC KIscc" KIC or KC
log Kneax log Kmax log Kmax

TYPE A TYPE B TYPE C

Fig. 10 -Types of corrosion fatigue crack-growth behavior. (Reprinted
with permission, from Ref. 42, p. 387. 0 1972 National Association of
Corrosion Engineers.)
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VALUES OF EXPONENT n

The previous statement that specific values of n can be associated with specific types of
steel microstructures is misleading. Not only are there indications that n may vary with
tempering temperature and Kk, (not yield strength), but also data show clearly that n is altered
by an adverse environment. The dogmatic statement that n - 2 for martensitic steels is belied
by the data of Ref. 37. Here Miller also suggests that the highest values of n may reflect the
effect of the atmospheric humidity, although no fractorgraphic evidence is presented. However,
it has been shown in 17-4 stainless [2] that changes in fracture mode can be reflected by
changes in n. When the fracture mechanism is by ductile striations, n - 2.26; when microvoid
coalescence (MVC) and cleavage appear, n - 4.0. This mode change is seen in air tests with
increased values of R.

Vosikovsky, however, notes an increase in n when the fracture mode changes from duc-
tile striations in air (n = 2.82) to brittle striation in NaCl. This observation pertains only to
high AK values in Region II. However, in Region I increases are also noted, since n = 3.95
(free corrosion) and n = 6.20 (cathodic potential).

Barsom's data [20] all show values of n = 2.25 in both air or salt water. For one material
only, l2Ni maraging steel, electron fractographic analysis indicates a fracture mode of ductile
striations for the tests in air and flat, fine-textured plateaus or quasi-cleavage in the salt solu-
tion. The fact that the salt-water data can be reinterpreted to give a slope greater than 2 is
more compatible with the fracture appearance.

12
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CONCLUSIONS

1. More comprehensive and systematic characterization of materials is needed.

2. Increasing costs of material, machining, and labor handicap the research. Cooperation
among laboratories with coordination by one would distribute the burden and increase the use-
fulness of the information.

3. To render such pooled information meaningful, a standardized test method is manda-
tory.
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